CHAPTER 5

Cost-Volume-Profit

SOLUTIONS TO BRIEF EXERCISES

BRIEF EXERCISE 5-1

Indirect labor is a variable cost because it increases in total directly and proportionately with the change in the activity level.

Supervisory salaries is a fixed cost because it remains the same in total regardless of changes in the activity level.

Maintenance is a mixed cost because it increases in total but not proportionately with changes in the activity level.

BRIEF EXERCISE 5-2

BRIEF EXERCISE 5-3

BRIEF EXERCISE 5-4

 $1,500 \div 1,000 = 1.50$ —Variable cost per mile.

	High	Low
Total cost	\$15,000	\$13,500
Less: Variable costs		
8,500 X \$1.50	12,750	
7,500 X \$1.50		<u> 11,250</u>
Total fixed costs	\$ 2,250	\$ 2,250

The mixed cost is \$2,250 plus \$1.50 per mile.

BRIEF EXERCISE 5-5

High		Low		Difference
\$74,500	_	\$36,000	=	\$38,500
40,000	_	18,000	=	22,000

$$$38,500 \div 22,000 = $1.75 \text{ per unit.}$$

	Activit	Activity Level	
	High	Low	
Total cost	\$74,500	\$36,000	
Less: Variable costs			
40,000 X \$1.75	70,000		
18,000 X \$1.75		<u>31,500</u>	
Total fixed costs	\$ 4,500	\$ 4,500	

BRIEF EXERCISE 5-6

- 1. (a) \$288 = (\$640 \$352)
 - (b) 45% (\$288 ÷ \$640)
- 2. (c) \$207 = (\$300 \$93)
 - (d) 31% (\$93 ÷ \$300)
- 3. (e) $$1,300 = ($325 \div 25\%)$
 - (f) \$975 (\$1,300 \$325)

BRIEF EXERCISE 5-7

RUSSELL INC. CVP Income Statement For the Quarter Ended March 31, 2017

Sales	\$2,200,000
Variable costs (\$920,000 + \$70,000 + \$86,000)	1,076,000
Contribution margin	1,124,000
Fixed costs (\$440,000 + \$45,000 + \$98,000)	<u>583,000</u>
Net income	<u>\$ 541,000</u>

BRIEF EXERCISE 5-8

(b) Contribution margin per unit \$234, or (\$520 – \$286) X = \$163,800 ÷ \$234 X = 700 units

BRIEF EXERCISE 5-9

Contribution margin ratio = $[(\$300,000 - \$180,000) \div \$300,000] = 40\%$ Required sales in dollars = $\$110,000 \div 40\% = \$275,000$

BRIEF EXERCISE 5-10

If variable costs are 70% of sales, the contribution margin ratio is $(\$1 - \$0.70) \div \$1 = .30$.

Required sales in dollars = $($195,000 + $75,000) \div .30 = $900,000$

BRIEF EXERCISE 5-11

Margin of safety = \$1,000,000 - \$800,000 = \$200,000Margin of safety ratio = $$200,000 \div $1,000,000 = 20\%$

BRIEF EXERCISE 5-12

Contribution margin per unit \$1.60 is (\$6.00 - \$4.40)Required sales in units = $($480,000 + $1,500,000) \div $1.60 = 1,237,500$.

SOLUTIONS FOR DO IT! REVIEW EXERCISES

DO IT! 5-1

Variable costs: Indirect labor, direct labor, and direct materials.

Fixed costs: Property taxes and depreciation.

Mixed costs: Utilities and maintenance.

DO IT! 5-2

(a) Variable cost: $($18,580 - $16,200) \div (10,500 - 8,800) = 1.40 per unit

Fixed cost: \$18,580 - (\$1.40 X 10,500 units) = \$3,880

or \$16,200 - (\$1.40 X 8,800) = \$3,880

(b) Total cost to produce 9,200 units: \$3,880 + (\$1.40 X 9,200) = \$16,760

DO IT! 5-3

Cedar Grove Industries CVP Income Statement For the Month Ended May 31, 2017

	<u>Total</u>	<u>Per Unit</u>
Sales	\$360,000	\$45
Variable costs	<u> 176,000</u>	<u>22</u>
Contribution margin	184,000	<u>\$23</u>
Fixed costs	<u> 120,000</u>	
Net income	\$ 64,000	

DO IT! 5-4

- (a) The formula is 250Q 170Q 160,000 = 0. Therefore, 80Q = 160,000, and the breakeven point in units is 2,000 (\$160,000 ÷ \$80).
- (b) The contribution margin per unit is \$80 (\$250 \$170). The formula therefore is $\$160,000 \div \80 , and the breakeven point in units is 2,000.

DO IT! 5-5

(a) CM per unit = Unit selling price – Unit variable costs \$12 = \$30 - \$18 CM ratio = CM per unit/Unit selling price 40% = \$12/\$30

Break-even point in dollars = Fixed costs ÷ Contribution margin ratio = \$220,000 ÷ 40% = \$550,000

- (b) Margin of safety $= \frac{\text{Actual sales} \text{Break-even sales}}{\text{Actual sales}}$ $= \frac{\$800,000 \$550,000}{\$800,000}$ = 31.25%
- (c) Sales Variable costs Fixed costs = Net income \$30Q – \$18Q = \$220,000 + \$140,000 \$12Q = \$360,000 Q = 30,000 units 30,000 units X \$30 = \$900,000 required sales

SOLUTIONS TO EXERCISES

EXERCISE 5-1

(a) The determination as to whether a cost is variable, fixed, or mixed can be made by comparing the cost in total or on a per-unit basis at two different levels of production.

Variable Costs Fixed Costs Mixed Costs Vary in total but remain constant on a per-unit basis. Remain constant in total but vary on a per-unit basis. Contain both a fixed element and a variable element. Vary both in total and on a per-unit basis.

(b) Using these criteria as a guideline, the classification is as follows:

Direct	materials
Direct	labor
Utilitie	S

Variable Variable Mixed

Rent
Maintenance
Supervisory salaries

Fixed Mixed Fixed

EXERCISE 5-2

EXERCISE 5-2 (Continued)

- (b) The relevant range is 3,000 8,000 units of output since a straight-line relationship exists for both direct materials and rent within this range.
- (c) Variable cost per unit

Within the relevant range (3,000 – 8,000 units)
$$= \frac{\text{Cost}}{\text{Units}}$$
$$= \frac{\$15,000^*}{5,000^*} = \frac{\$3 \text{ per}}{\text{unit}}$$

(a) Maintenance Costs:

$$\frac{\$5,500 - \$2,700}{700 - 300} = \frac{\$2,800}{400} = \$7$$
 variable cost per machine hour

		700	300
		Machine Hours	Machine Hours
Total c	osts	\$5,500	\$2,700
Less:	Variable costs		
	700 X \$7	4,900	
	300 X \$7		<u>2,100</u>
Total f	ixed costs	<u>\$ 600</u>	<u>\$ 600</u>

Thus, maintenance costs are \$600 per month plus \$7 per machine hour.

^{*}Any costs and units within the relevant range could have been used to calculate the same unit cost of \$3.

EXERCISE 5-3 (Continued)

EXERCISE 5-4

1.	Wood used in the production of furniture.	Variable.
2.	Fuel used in delivery trucks.	Variable.
3.	Straight-line depreciation on factory building.	Fixed.
4.	Screws used in the production of furniture.	Variable.
5.	Sales staff salaries.	Fixed.
6.	Sales commissions.	Variable.
7.	Property taxes.	Fixed.
8.	Insurance on buildings.	Fixed.
9.	Hourly wages of furniture craftsmen.	Variable.
10.	Salaries of factory supervisors.	Fixed.
11.	Utilities expense.	Mixed.
12.	Telephone bill.	Mixed.

(a) Maintenance Costs:

$$\frac{\$4,620 - \$2,640}{8,000 - 3,500} = \frac{\$1,980}{4,500} = \$.44$$
 variable cost per machine hour

	Activit	Activity Level		
	High	Low		
Total cost	\$4,620	\$2,640		
Less: Variable costs				
8,000 X \$.44	3,520			
3,500 X \$.44		<u>1,540</u>		
Total fixed costs	<u>\$1,100</u>	<u>\$1,100</u>		

Thus, maintenance costs are \$1,100 per month plus \$.44 per machine hour.

(a)	<u>Cost</u> Direct materials Direct labor	<u>Fixed</u>	<u>Variable</u> X X	<u>Mixed</u>
	Utilities Property taxes	X		X
	Indirect labor Supervisory salaries	X	X	
	Maintenance Depreciation	X		X
	Depreciation	^		
(b)	Fixed costs		= \$1,000 + \$1,900 \$300 + \$200 = \$5,800	+ \$2,400 +
	Variable costs to produce 3	3,000 units	s = \$7,500 + \$18,000 = \$30,000) + \$4,500
	Variable cost per unit		= \$30,000/3,000 ui = \$10 per unit	nits
	Variable cost portion of mix	xed cost	= Total cost – Fixe	ed portion
	Utilities:			
	Variable cost to produce 3,	000 units	= \$2,100 - \$300 = \$1,800	
	Variable cost per unit		= \$1,800/3,000 uni = \$.60 per unit	its
	Maintenance:			
	Variable cost to produce 3,	000 units	= \$1,100 - \$200 = \$900	
	Variable cost per unit		= \$900/3,000 units = \$.30 per unit	3
	Cost to produce 5,000 units	unit X	5,000 units) \$.60 + \$.30) X 5,00 0	+ Fixed cost 0) + \$5,800 + \$5,800

MEMO

To: Marty Moser

From: Student

Re: Assumptions underlying CVP analysis

CVP analysis is a useful tool in analyzing the effects of changes in costs and volume on a company's profits. However, there are some assumptions which underlie CVP analysis. When these assumptions are not valid, the results of CVP analysis may be inaccurate.

The five assumptions are:

- 1. The behavior of both costs and revenues is linear throughout the relevant range of the activity index.
- 2. Costs can be classified accurately as either fixed or variable.
- 3. Changes in activity are the only factors that affect costs.
- 4. All units produced are sold.
- 5. When more than one type of product is sold, the sales mix will remain constant.

If you want further explanation of any of these assumptions, please contact me.

EXERCISE 5-8

(a) Contribution margin per lawn = \$60 - (\$12 + \$10 + \$2)

Contribution margin per lawn = \$36

Contribution margin ratio = $$36 \div $60 = 60\%$

Fixed costs = \$1,400 + \$200 + \$2,000 = \$3,600

Break-even point in lawns = $$3,600 \div $36 = 100$

(b) Break-even point in dollars = 100 lawns X \$60 per lawn = \$6,000 per month

OR

Fixed costs ÷ Contribution margin ratio = \$3,600 ÷ .60 = \$6,000 per month

1. Contribution margin per room = \$60 - (\$14 + \$28)

Contribution margin per room = \$18

Contribution margin ratio = $$18 \div $60 = 30\%$

Fixed costs = \$5,900 + \$1,100 + \$1,000 + \$100 = \$8,100

Break-even point in rooms = $\$8,100 \div \$18 = 450$

2. Break-even point in dollars = 450 rooms X \$60 per room

= \$27,000 per month

OR

Fixed costs ÷ Contribution margin ratio = \$8,100 ÷ .30

= \$27,000 per month

EXERCISE 5-10

(a) Contribution margin in dollars: Sales = 560 X \$120 = \$67,200

Variable costs = \$67,200 X .60 = <u>40,320</u> Contribution margin <u>\$26.880</u>

Contribution margin per unit: \$120 - \$72 (\$120 X 60%) = \$48.

Contribution margin ratio: $$48 \div $120 = 40\%$.

(b) Break-even sales in dollars: $\frac{$21,024}{40\%} = $52,560$.

Break-even sales in units: $\frac{$21,024}{$48} = 438.$

(a) 1. Contribution margin ratio is:
$$\frac{$27,000}{$36,000} = 75\%$$

Break-even point in dollars =
$$\frac{$18,000}{75\%}$$
 = $\frac{$24,000}{75\%}$
2. Round-trip fare = $\frac{$36,000}{1,500 \text{ fares}}$ = \$24

2. Round-trip fare =
$$\frac{$36,000}{1,500 \text{ fares}}$$
 = \$24

Break-even point in fares =
$$\frac{$24,000}{$24}$$
 = $\frac{1,000 \text{ fares}}{}$

(b) At the break-even point fixed costs and contribution margin are equal. Therefore, the contribution margin at the break-even point would be \$18,000.

EXERCISE 5-12

$$=\frac{\$112,000}{(\$350,000\div\$5)}$$

OR

Contribution margin ratio =
$$$1.60 \div $5.00 = 32\%$$

EXERCISE 5-12 (Continued)

(b) Fixed costs ÷ Contribution margin ratio = Break-even sales in dollars Fixed costs ÷ .32 = \$420,000 = \$134,400 (\$420,000 X.32)

Since fixed costs were \$112,000 in 2016, the increase in 2017 is \$22,400 (\$134,400 – \$112,000).

EXERCISE 5-13

(a) and (b)

BILLINGS COMPANY CVP Income Statement For the Month Ended September 30, 2017

	Total	Per Unit
Sales (600 video game consoles)	\$240,000	\$400
Variable costs	<u> 168,000</u>	<u> 280</u>
Contribution margin	72,000	\$120
Fixed costs	<u>54,000</u>	
Net income	\$ 18,000	

(c) Sales = Variable costs + Fixed costs \$400X = \$280X + \$54,000 \$120X = 54,000 X = 450 units

(d) BILLINGS COMPANY CVP Income Statement For the Month Ended September 30, 2017

	Total	Per Unit
Sales (450 video game consoles)	\$180,000	\$400
Variable costs	<u> 126,000</u>	<u> 280</u>
Contribution margin	54,000	<u>\$120</u>
Fixed costs	<u>54,000</u>	
Net income	\$ -0-	

(a) Units sold in 2016 =
$$\frac{\$570,000 + \$210,000}{\$150 - \$90} = \underline{13,000}$$
 units

(b) Units needed in 2017 =
$$\frac{\$570,000 + \$262,000 *}{\$150 - \$90} = \underline{13,867}$$
 units (rounded)

(c)
$$\frac{\$570,000 + \$262,000}{X - \$90} = 13,000 \text{ units, where X = new selling price}$$

 $\$832,000 = 13,000X - \$1,170,000$
 $\$2,002,000 = 13,000X$
 $X = \$154$

EXERCISE 5-15

- 1. Unit sales price = \$400,000 ÷ 5,000 units = \$80 Increase selling price to \$88, or (\$80 X 110%).

 Net income = \$440,000 \$240,000 \$90,000 = \$110,000.
- 2. Reduce variable costs to 55% of sales. Net income = \$400,000 - \$220,000 - \$90,000 = \$90,000.

Alternative 1, increasing selling price, will produce the higher net income.

(b) 1. Break-even sales in units:

2. Break-even sales in dollars:

$$X = .625X + $600,000$$

.375X = \$600,000
 $X = $1,600,000 \text{ or } $600,000 \div 37.5\%$

- (c) 1. Margin of safety in dollars: \$2,000,000 \$1,600,000 = \$400,000
 - 2. Margin of safety ratio: $$400,000 \div $2,000,000 = 20\%$

- (a) Contribution ratio = Contribution margin \div Sales $(\$40 \$24) \div \$40 = 40\%$
- (b) Break-even in dollars: $$19,500 \div 40\% = $48,750$
- (c) Margin of safety = (2,500 X \$40) \$48,750 = \$51,250 $$51,250 \div $100,000 = 51.25\%$
- (d) Current contribution margin \$40 \$24 = \$16
 Total contribution margin is \$16 X 2,500 = \$40,000
 30% increase in contribution margin is \$40,000 X 30% = \$12,000
 Total increase in sales required: \$12,000 ÷ 40% = \$30,000